
Satellite-Based Daily PM2.5 Estimates During Fire
Seasons in Colorado
Guannan Geng1 , Nancy L. Murray2, Daniel Tong3,4,5 , Joshua S. Fu6,7 , Xuefei Hu1, Pius Lee3 ,
Xia Meng1, Howard H. Chang2, and Yang Liu1

1Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA, 2Department of
Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA, 3NOAA Air Resources
Laboratory, College Park, MD, USA, 4Center for Spatial Information Science and Systems, George Mason University, Fairfax,
VA, USA, 5Cooperative Institute for Climate and Satellites, University of Maryland, College Park, MD, USA, 6Department of
Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA, 7Climate Change Science Institute and
Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract The western United States has experienced increasing wildfire activities, which have negative
effects on human health. Epidemiological studies on fine particulate matter (PM2.5) from wildfires are
limited by the lack of accurate high-resolution PM2.5 exposure data over fire days. Satellite-based aerosol
optical depth (AOD) data can provide additional information in ground PM2.5 concentrations and has been
widely used in previous studies. However, the low background concentration, complex terrain, and large
wildfire sources add to the challenge of estimating PM2.5 concentrations in the western United States. In this
study, we applied a Bayesian ensemble model that combined information from the 1 km resolution AOD
products derived from the Multi-angle Implementation of Atmospheric Correction (MAIAC) algorithm,
Community Multiscale Air Quality (CMAQ) model simulations, and ground measurements to predict daily
PM2.5 concentrations over fire seasons (April to September) in Colorado for 2011–2014. Our model had a
10-fold cross-validated R2 of 0.66 and root-mean-squared error of 2.00 μg/m3, outperformed the multistage
model, especially on the fire days. Elevated PM2.5 concentrations over large fire events were successfully
captured. The modeling technique demonstrated in this study could support future short-term and
long-term epidemiological studies of wildfire PM2.5.

1. Introduction

The western United States, especially the Mountain States, have more complex terrain than any other region
in the United States. Its physical geography ranges from high mountains like the Rocky Mountains, to plains
or deserts, and it has dry condition and extreme heat in the summer time that caused widespread forest fires
(Abatzoglou &Williams, 2016). In the past few decades, the western United States has experienced increasing
wildfire activities with higher frequency, longer duration, and larger area burned sizes (Marlon et al., 2012;
Westerling et al., 2006). Wildfires are significant sources of fine particulate matters (PM2.5, particles with aero-
dynamic diameters less than 2.5 μm) and could enhance the summer-time averaged PM2.5 concentrations by
1–2 μg/m3, or even double the value during large fire years (Jaffe et al., 2008).

Previous studies have reported strong associations between urban PM2.5 and adverse health effects, includ-
ing cardiovascular and respiratory morbidity and mortality (Brook et al., 2010; Pope & Dockery, 2006).
However, health effects of urban PM2.5 and wildfire PM2.5 might differ (Le et al., 2014; J. C. Liu et al., 2017;
Wegesser et al., 2010; Wong et al., 2011), because wildfire PM2.5 predominantly comes from burning trees
and underbrush, resulting in higher organic aerosols than those in urban air pollutions (Alves et al., 2011;
Na & Cocker, 2008). Moreover, urban PM2.5 tends to generate chronic, low-level exposures, whereas wildfire
smoke is often related to acute, high concentration exposures (Cascio, 2018). Therefore, epidemiologic stu-
dies assessing the specific health impacts of wildfire PM2.5 are important to better understand its public
health and environmental risks.

A challenge in studying health effects of wildfire smoke is the lack of accurate high-resolution exposure data.
Previous studies usually used the PM2.5 simulations from the chemical transport models (CTMs) or the ground
measurements of PM2.5 (Le et al., 2014). CTM simulations over fire events might have biases due to the uncer-
tainties in fire emissions (Tian et al., 2009). Ground measurements from the sparse PM2.5 monitoring sites in
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the western United States are often unable to capture the local variations of PM2.5 concentrations during fire
events, which may lead to exposure misclassification and can impact the accuracy of health-effects estimates
(Armstrong, 1998).

Satellite-based aerosol optical depth (AOD), which is a measure of the extinction of light from aerosols in the
atmosphere, has the advantages of high spatial resolution, near global coverage (polar-orbiting satellites),
and long-term records. Such data have been widely used for surface PM2.5 concentration estimation in
regions where ground measurements are limited (Engel-Cox et al., 2004; Geng et al., 2015; Just et al.,
2015; Y. Liu et al., 2007; Wang & Christopher, 2003). Many studies have proposed statistical models using
AOD to predict PM2.5 concentrations (X. F. Hu et al., 2014b; X. F. Hu, Waller, Lyapustin, Wang, Al-Hamdan,
et al., 2014; Kloog et al., 2012). For example, Kloog et al. (2014) used AOD data from the Multi-angle
Implementation of Atmospheric Correction (MAIAC) algorithm based on the Moderate Resolution Imaging
Spectroradiometer (MODIS) and a multistage statistical model to estimate daily PM2.5 at 1 km spatial resolu-
tion across the northeastern United States for 2003–2011. The model had an excellent prediction perfor-
mance with a 10-fold cross-validated (CV) R2 of 0.88. X. Hu et al. (2014a) developed a two-stage model in
the southeastern United States for 2001–2010 using 1 km MAIAC AOD, and the results were also promising
with CV R2 ranging from 0.62 to 0.78 among different years. Chang et al. (2014) proposed a novel method that
used 10 km resolution MODIS AOD in a Bayesian downscaler to estimate PM2.5 in the southeastern United
States. The model had a CV R2 of 0.78 and a root-mean-squared error (RMSE) of 3.61 μg/m3.

CTMs, which simulate the chemical and physical processes in the atmosphere, are also powerful tools to
provide spatial and temporal continuous PM2.5 concentrations (Bey et al., 2001; Binkowski & Roselle,
2003). Although CTMs have limitations such as biased simulation results due to uncertainties in the input
emissions, meteorological fields, and chemical reactions, they can predict PM2.5 concentrations with
complete spatiotemporal coverage. Previous studies have scaled (Van Donkelaar et al., 2010), downscaled
(Di et al., 2016), and fused (Friberg et al., 2016) CTM results with satellite remote sensing, meteorological
conditions, land use data, and ground observations to generate high-resolution PM2.5 concentrations for
epidemiological studies.

Statistical models have obtained good performance in PM2.5 exposure estimation in the eastern part of the
United States (X. F. Hu et al., 2014b; X. F. Hu, Waller, Lyapustin, Wang, Al-Hamdan, et al., 2014; Kloog et al.,
2014). However, studies using statistical methods and focusing on western mountainous United States, where
the geography, climate, and aerosol profiles are significantly different, are still limited except for being
included in national models (Di et al., 2016; X. F. Hu et al., 2017). In this region, the complex terrain, low back-
ground concentrations, and the large uncertainties in wildfire emissions make it a challenge for CTMs to pre-
dict accurate PM2.5 concentrations (Appel et al., 2012). Di et al. (2016) developed a national model using neural
network methods to predict PM2.5 concentrations over United States. They have noted an east-west gradient
in the model performance and attributed it to the low background concentration and variability in terrain.

In this study, we selected the state of Colorado, which has the highest mean elevation and the second largest
population among the Mountain States, as a case to estimate the PM2.5 concentrations over fire seasons. The
year 2012 was the warmest year on record for the contiguous United States since 1895, paired with
exceptional dryness across the nation (Chylek et al., 2014). In that year, Colorado experienced an unusually
devastating series of wildfires, which burned 997 km2 area in total (https://www.nifc.gov/fireInfo/fireInfo_sta-
tistics.html), ranking the highest among the last decade (2008–2017). Therefore, our study focused on the fire
seasons (April to September) over 2011–2014. We applied a Bayesian ensemble model (Murray et al., 2018),
which takes advantage of both the high-resolution of MAIAC AOD and full coverage of model simulations
to predict daily PM2.5. To our knowledge, this is the first study focusing on the PM2.5 estimation using
1 km high-resolution AOD data in a Mountain State over fire seasons. We also compared the performance
of a commonly used multistage model to our Bayesian ensemble model.

2. Materials and Methods
2.1. Study Region

The study region covers the state of Colorado and a one-degree buffer, which is approximately 900 × 600 km2

(Figure 1). This region has a diverse geography, including the Southern Rocky Mountains and part of the
Colorado Plateau in the west, as well as the edge of the Great Plains in the east.
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2.2. Data Sets
2.2.1. PM2.5 Measurements
The daily 24-hr mean PM2.5 concentration data within the study domain from April to September during
2011–2014 were downloaded from the U.S. Environmental Protection Agency’s Air Quality System (https://
www.epa.gov/outdoor-air-quality-data/). There are 46 PM2.5 monitoring stations in the domain, mostly
distributed along the edges of the mountains as shown in Figure 1.
2.2.2. MAIAC AOD Data
MODIS is a key instrument aboard the Terra and Aqua satellite that provides information about aerosols
(King et al., 1992; Salomonson et al., 1989). A recently developed algorithm (MAIAC) provides AOD product
at 1 km spatial resolution from the MODIS data (A. Lyapustin et al., 2012; Alexei Lyapustin, Martonchik,
et al., 2011; A. Lyapustin, Wang, et al., 2011). MAIAC uses time series analysis and simultaneous proces-
sing of groups of pixels in fixed 25 × 25 km2 blocks to derive the surface bidirectional reflectance distri-
bution function and aerosol parameters without empirical parameterization as in the MODIS Dark Target
operational algorithms.

The MAIAC AOD has been used to estimate PM2.5 exposure over the United States (Di et al., 2016; X. F. Hu,
Waller, Lyapustin, Wang, Al-Hamdanet, al., 2014). In this study, we used the latest version of the MAIAC
AOD data (ftp://maiac@dataportal.nccs.nasa.gov/DataRelease/NorthAmerica_2000-2016/) from both Terra
(overpass time at 10:30 am) and Aqua (overpass time at 1:30 pm) for April to September during 2011–
2014. To improve the spatial coverage of the MAIAC AOD data, linear regression between daily Terra AOD
and Aqua AOD were used to predict missing AOD when only one of them was available (X. F. Hu, Waller,
Lyapustin, Wang, Al-Hamdan, et al., 2014; Jinnagara Puttaswamy et al., 2014). Then AOD data from both satel-
lite were averaged.

The MAIAC algorithm has the capability for smoke (dust) detection, facilitated by the knowledge of the bidir-
ectional reflectance distribution function (A. Lyapustin et al., 2012). It provides dominant aerosol types as
background, smoke, and dust for each 1 km grid cell. The discrimination of smoke and dust relies on an
enhancement in the aerosol absorption in wavelength 0.412 μm compared to 0.47–0.67 μm (A. Lyapustin
et al., 2012), and on assessment of the particle size. We used this aerosol type product as a conservative indi-
cator of the occurrences of smoke plumes (i.e., the smoke mask) in our model.

Figure 1. Study region showing the elevation (background color), the PM2.5 monitoring stations (dotted triangles), and the
interstate highway (blue lines).
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2.2.3. Meteorological Fields
Meteorological fields used in this study included air temperature, relative humidity (RH), and planetary
boundary layer height (PBLH). Air temperature and RH data were obtained from the North American Land
Data Assimilation System phase 2 (NLDAS-2, http://ldas.gsfc.nasa.gov/nldas/) at a spatial resolution of
~14 km. The PBLH data were taken from the North American Regional Reanalysis (NARR, http://www.emc.
ncep.noaa.gov/mmb/rreanl/) at a spatial resolution of 32 km. All meteorological data were averaged between
9 a.m. and 3 p.m. to represent the weather condition at satellite overpass times.
2.2.4. Land-Use Variables
The elevation data at a spatial resolution of 30 m were obtained from the National Elevation Data set (NED,
http://ned.usgs.gov). Road network data including road types of limited access highway and local road were
extracted from ESRI StreetMap USA (Environmental System Research Institute, Inc., Redland, CA). Forest cover
and impervious surface data at the spatial resolution of 30 m were taken from the 2011 National Land Cover
Database (NLCD, http://www.mrlc.gov). Population density data at the census tract level were obtained from
the U.S. Census Bureau (https://www2.census.gov/geo/tiger/).
2.2.5. Community Multiscale Air Quality Model Simulations
Daily surface PM2.5 concentrations at 12 km resolution were produced using an experimental version of
the National Air Quality Forecast Capability (NAQFC) system operated by the National Oceanic and
Atmospheric Administration (P. Lee et al., 2017; Pan et al., 2014; Tong et al., 2016). This modeling system used
the Community Multiscale Air Quality (CMAQ) model version 4.6 (Byun & Schere, 2006) to predict surface O3

and PM2.5 concentrations. Inputs to the CMAQmodel included emission data and hourly meteorological data
from NOAA’s operational North American Mesoscale (NAM) meteorological model (Otte et al., 2005; Stajner
et al., 2011). The NAQFC emissions included gaseous and particulate emissions from anthropogenic sources
and natural sources (biogenic, fire, dust, and sea salt). Emissions of wildfire and prescribed burning were
obtained from a multiyear climatological data set from the U.S. EPA. PM2.5 concentrations from the bottom
layer in the model were used to represent the surface PM2.5 level.
2.2.6. Fire Count Data
In this study, we used the MODIS fire count data to define fire days and nonfire days for our analysis. The fire
count data for 2011–2014 was obtained from the U.S. Department of Agriculture (USDA) Forest Service
Remote Sensing Applications Center (https://fsapps.nwcg.gov/afm/gisdata.php), which include Terra and
Aqua MODIS fire and thermal anomalies data generated from MODIS near real-time direct readout data.
These data are a composite data set compiled from multiple sources, such as the USDA Forest Service
Geospatial Technology and Applications Center, University of Wisconsin Space Science and Engineering
Center, University of Alaska-Fairbanks Geographic Information Network of Alaska, the NASA Goddard
Space Flight Center Direct Readout Laboratory, and NASA Goddard Space Flight Center MODIS Rapid
Response System. The fire count data were provided as the centroids of the 1 km fire detections and were
downloaded in Environmental Systems Research Institute (ESRI) shapefile format. For a specific day in our
study time period, if there were any fire counts in the domain on that day, it was defined as a fire day.
Those days with no fire counts were defined as nonfire days.

2.3. Data Integration

All data were linked to the 1 km buffer zones centered at each PM2.5 monitoring site for the training data set.
MAIAC AOD, MAIAC smoke mask, meteorological fields, and CMAQ PM2.5 data were matched to each site
using the nearest neighbor approach. Elevation, forest cover, and impervious surface data were averaged,
and road lengths were summed within the 1-km buffer. The population density for each site was assigned
by the value of the census tract that contains the site. For the prediction data set, the 1 kmMAIAC grid cover-
ing the study domain was used for data processing same as above.

2.4. Model Structure and Evaluation

In this study, we used a Bayesian ensemble model to estimate the daily PM2.5 concentrations over Colorado
during fire seasons. A commonly used multistage model was also adopted as a comparison of the Bayesian
ensemble model. All modeling was done using the R statistical software version 3.3.2.
2.4.1. Bayesian Ensemble Model
We adopted a two-stage Bayesian ensemble model to incorporate information from satellite remote sensing
product, CTM simulation, and ground measurements. The details of this modeling framework are described
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in Murray et al. (2018); thus, we only provide a brief summary here. The first stage involves two statistical
downscalers to calibrate the PM2.5-AOD relationship varying in both time and space (i.e., the AOD downsca-
ler) and calibrate CMAQ PM2.5 simulations (i.e., the CMAQ downscaler), respectively. Following Berrocal et al.
(2010) and Chang et al. (2014), the downscaler model can be written as below:

Yst ¼ αst þ βstXst þ γZst þ εst (1)

where Yst represents the measured PM2.5 concentration at site s on day t. Xst is the main predictor value at site
s on day t, with either AOD value or CMAQ PM2.5 concentrations for the AOD downscaler and the CMAQ
downscaler, respectively. Zst is a vector that contains additional predictors such as meteorological and land
use variables. For the AOD downscaler, the Z vector included RH, air temperature, PBLH, elevation, limited
highway length, local road length, and the smoke mask. For the CMAQ downscaler, we used only elevation
as a covariate. αst and βst are the spatial-temporal random effects of the model, which correct the additive
and multiplicative bias associated with AOD or the CMAQ PM2.5. γ is the fixed-effect regression coefficients
associated with Z vector. εst is the residual error term, which is assumed to be independent and normally
distributed with mean zero. More details about the downscaler model, particularly the spatio-temporal
specifications of αst and βst, can be found in Chang et al. (2014).

In the second stage, PM2.5 predictions from the AOD downscaler and the CMAQ downscaler were combined
using an ensemble weighting approach to maximize available information. The weights used to combine the
PM2.5 predictions from the two downscalers were obtained using an ensemble method based on the
Bayesian Model averaging (BMA) framework (Raftery et al., 2005). The extension of this method allows us
to use a Bayesian approach, that is, Markov Chain Monte Carlo (MCMC), to obtain weights at monitoring loca-
tions. More specifically, we assumed a Beta(1,1) prior on each location’s weight, ws; then at each iteration, we
updated the weight based on zt, a Bernoulli distributed random variable with probability akin to a normal
mixture model and, in turn, ws was updated until finally we had a chain of values and used the median of
these values as the weight. The weights were first calculated for each monitor location and then interpolated
to neighboring locations without monitoring stations using a Bayesian kriging approach. The final prediction
of PM2.5 is presented as follows:

PM2:5;st ¼ 1� wsð ÞYAOD
st þ wsY

CMAQ
st (2)

where YAOD
st and YCMAQ

st are estimates (posterior means) obtained using statistical downscaling techniques at
site s in day t andws is the estimatedweight for the CMAQ downscaler at site s. To allow for temporal variation
in the ensemble weights, we calculated the weights for the four years separately. For grid cells that havemiss-
ing values in the AOD downscaler due to the missing of MAIAC AOD, the weights of the CMAQ downscaler
were set to be 100%. After the gap-filling with calibrated CMAQ PM2.5, full coverage of PM2.5 maps on daily
scale were obtained.
2.4.2. Multi-Stage Model
Multistage statistical models were widely used in previous works and have made successful estimates in the
eastern United States (X. F. Hu, Waller, Lyapustin, Wang, Al-Hamdan, et al., 2014; Kloog et al., 2014; M. Lee
et al., 2016]. In this study, we adopted a three-stage regression model that used similar parameters as the
Bayesian ensemble model as a benchmark. The first stage was a linear mixed effect model to account for
the temporal variations in the PM2.5-AOD relationship. The residuals of the linear mixed effect model were
then modeled using a second stage geographically weighted regression model to accommodate spatial
biases. The third stage model was a generalized additive model that used the predicted PM2.5 data from
the second stage to predict daily PM2.5 in grid cells with missing AOD on that day. More details about the
three-stage model are presented in the supporting information.
2.4.3. Evaluation
We carried out a 10-fold cross validation to evaluate the out-of-sample accuracy of our models. The entire
model fitting data set was randomly split into 10 subsets and each one contained approximately 10% of
the data. In each round of cross validation, we used nine subsets to fit the model and made predictions on
the remaining subset. This process was repeated for 10 times so every subset in the data was tested. The
agreement between the measured and predicted PM2.5 was evaluated using statistical indicators such as
the coefficient of determination (R2), RMSE, and mean bias (MB).
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3. Results
3.1. Descriptive Statistics of the Model Fitting Data Set

The spatial distribution of the fire counts within our study domain over fire seasons for 2011–2014 is pre-
sented in Figure S1. Several large fire events were found in 2012 and 2013, represented by the clustered fire
counts. According to the fire count data, we have identified 373 fire days and 359 nonfire days during our
study time period.

Table 1 shows the descriptive statistics of the dependent and independent variables in the model fitting data
set. The fire-season mean PM2.5 concentration was 5.9 μg/m3 over 2011–2014 for the study domain, with a
standard deviation of 3.4 μg/m3, and the mean of the MAIAC AOD was 0.12 with a standard deviation of
0.08. The spatial coverage of the Aqua-Terra combined MAIAC AOD during the whole study time period,
the fire days, and the nonfire days is presented in Figure S2. On average, the combined MAIAC AOD covers
59% days during April to September over 2011–2014, 68% days during the fire days, and 49% during the non-
fire days for each grid cell. The mean value of the PM2.5 simulations from the CMAQ model in the fitting data
set was 3.9 μg/m3, 34% lower than the mean PM2.5 observations. Although the CMAQmodel underestimated
the absolute value of PM2.5 concentrations, it was able to capture the spatial patterns of the PM2.5 pollution
and provide reasonable fire-related PM2.5 distributions (Figure S3).

3.2. Model Performance Evaluation

After preliminary runs of the Bayesian ensemblemodel, we found 43 outlying observations (~5‰) in the data
set that were significantly underestimated (by a factor of 2). These data were excluded in the fitting process
to avoid model biases, which will be further described in section 4.

Figures 2a–2c show the 10-fold cross-validation results from the AOD downscaler, the CMAQ downscaler,
and the Bayesian ensemble model on all days. PM2.5 predictions from the AOD downscaler showed good
agreement with the observations, with a CV R2 of 0.65 and the regression slope near unity. RMSE and
MB for daily predictions were 2.03 and 0.03 μg/m3, respectively. After the calibration process, the accu-
racy of the CMAQ PM2.5 improved greatly, with CV R2 increasing to 0.61. By taking into account the
prediction errors and relative performance of the two downscalers, the final ensemble PM2.5 represented
a weighted average of calibrated AOD and calibrated CMAQ predictions that had smaller standard errors.
The CV R2 of the Bayesian ensemble model was 0.66, and the RMSE and MB were reduced to 2.00 and
0.01 μg/m3, respectively.

The performance of the Bayesian ensemble model on the fire and nonfire days is presented in Figures 2d and
2e. About 65% of the data in the fitting data set were marked as on fire days. The model had a similar CV R2 of
0.65 on both the fire and nonfire days, while the model’s RMSE on the nonfire days was 1.80 μg/m3, lower
than that on the fire days (2.11 μg/m3), indicating a slightly better performance of the model on the
nonfire days.

Table 1
Descriptive Statistics for Dependent and Independent Variables in the Model Fitting Data Set

Variable (N = 7723) Mean SD Min Max

PM2.5 (μg/m
3) 5.9 3.4 0.0 37.6

CMAQ modeled PM2.5 (μg/m
3) 3.9 2.9 0.1 26.8

AOD 0.12 0.08 0.01 1.49
RH (%) 27 11 5 82
2-m temperature (K) 296 7 271 312
PBLH (m) 2,509 618 930 5,334
Elevation (m) 1,827 424 1,183 3,323
Limited highway length (m) 69 235 0 943
Local road length (m) 1,023 1,267 0 4,533
Imperious surface (%) 30 32 0 88
Forest cover (%) 34 39 0 100
Population density (population/km2) 594 933 0 3,557

10.1029/2018JD028573Journal of Geophysical Research: Atmospheres

GENG ET AL. 8164



3.3. PM2.5 Predictions

Figure 3 shows the spatial patterns of the predicted PM2.5 concentrations from the Bayesian ensemble model
in Colorado, averaged over the fire seasons (April to September) for the four years. The spatial distribution of
PM2.5 concentrations was similar over the years. Hotspots of long-term PM2.5 concentrations were found in
the urban centers (e.g., Denver), as well as along major interstate highways. Lower levels of PM2.5 appeared
over the Rocky Mountain regions, where anthropogenic emissions were limited. The year of 2012 had a
significant enhancement in PM2.5 concentrations compared to the other years, with a region-averaged mean
PM2.5 of 6.4 μg/m3 compared to 4.6–5.1 μg/m3. As mentioned above, Colorado experienced a series of
wildfires in 2012. These fire events released air pollutants such as black carbon, organic carbon, and gas pre-
cursors of aerosols, elevating the PM2.5 levels over our study domain.

We selected June 2012 as an example to show the model’s capability of capturing local-scale variability in
PM2.5 concentrations from wildfires, as presented in Figures 4 and 5. In June 2012, there were two large wild-
fire events in Colorado, the High Park fire and the Little Sand fire, which burned 353 and 91 km2 separately.
The monthly mean PM2.5 concentrations over Colorado and the two fire events are presented in Figure 4,
with the locations of the fires marked by red rectangles. The monthly mean PM2.5 concentrations over the
burning areas were significantly higher than their surrounding regions. For the High Park fire, the averaged
PM2.5 concentrations were even comparable to those in the Denver metropolitan area, which is the largest
urban center in Colorado.

Daily prediction maps of PM2.5 and the corresponding MODIS surface reflectance (true color) images over the
two fire events are shown in Figure 5. We selected three consecutive days from 19 to 21 June as examples to
show our model’s capability of estimating PM2.5 over smoke plumes on daily scale. The fire spots are marked

Figure 2. 10-fold cross-validation results of the (a) AOD downscaler, the (b) CMAQ downscaler, and the (c) Bayesian ensemble model on all days, as well as 10-fold
cross-validation results of the Bayesian ensemble model on (d) fire days and (e) nonfire days. The color of the symbols represents the plot density. The solid line
indicates the linear regression between PM2.5 observations and predictions. The dashed line shows the 1:1 line.
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Figure 3. Predicted fire season mean PM2.5 concentrations at spatial resolution of 1 km over 2011–2014. Fire season was
defined as April to September.

Figure 4. Monthly averaged predicted PM2.5 concentrations over Colorado in June 2012. The two zoom in maps are High
Park fire (up) and Little Sand fire (bottom).
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Figure 5. Examples of the daily predicted PM2.5 concentrations and the MODIS surface reflectance (true color) image over fire events. The top two rows show triplets
of consecutive days for the High Park fire, while the bottom two rows for the Little Sand fire. The red dots in the true color image show the fire counts.

10.1029/2018JD028573Journal of Geophysical Research: Atmospheres

GENG ET AL. 8167



as red dots, and the dense fire smoke is visible as gray plumes. Our model successfully captured the elevated
PM2.5 concentrations along the smoke plume.

4. Discussion

In this work, we estimated daily PM2.5 concentrations at 1 km resolution in the fire seasons (i.e., April to
September) over Colorado for 2011–2014. The output data have full coverage in space and time, which allow
us to study the influence of wildfires on air quality and support future health impact studies. Our Bayesian
ensemble approach calibrated the satellite-retrieved data and the CTM outputs, and then combined them
to improve the predictions of PM2.5 levels. The final predictions have incorporated advantages from multiple
sources, outperforming the exposure data provided by a single source like the CTM or the ground measure-
ments used in previous studies.

Our Bayesian ensemble model has the capability to capture the smoke plumes over large fire events. To test
the importance of the satellite-based inputs (i.e., MAIAC AOD and smoke mask) in our model, we conducted
two sensitivity runs with MAIAC AOD and both MAIAC AOD and smoke mask excluded from the model,
respectively. The 10-fold CV results and examples of the daily prediction maps from the two sensitivity sce-
narios are presented in Figure S4. When excluding MAIAC AOD from the model, the CV R2 decreased from
0.65 to 0.61 on the fire days and from 0.65 to 0.63 on the nonfire days. High PM2.5 levels over smoke plumes
were underestimated compared to the original model, though the smoke plumes were still captured. When
excluding both theMAIAC AOD and the smokemask from themodel, the smoke plume in the predictionmap
no longer existed, indicating that MAIAC AOD and smoke mask were important predictors in our model for
estimating PM2.5 from fire smoke. Besides, elevation, RH and PBLH were also important predictors in our
model, perhaps because the variable terrain had great impact on air advection and diffusion in this region.
Moreover, the CMAQmodel, which had biases in the simulated PM2.5 value but reasonably captured the spa-
tial patterns of the wildfire-related PM2.5, was able to reduce the final prediction errors and fill the data gaps
after being calibrated against ground measurements.

We also compared the performance of our Bayesian ensemble model with the three-stage model. The three-
stage model used similar model parameters and the same input data set as the Bayesian ensemble model.
The 10-fold CV results of the three-stage model are shown in Figure S5. Although the multistage model could
achieve a CV R2 of ~0.80 in previous studies over the southeastern and northeastern United States (X. F. Hu,
Waller, Lyapustin, Wang, Al-Hamdan, et al., 2014; M. Lee et al., 2016), the best we got in our study domain was
only 0.47, 0.48, and 0.44 for the three stages separately, reflecting the complex PM2.5-AOD relationship over
our study region. The Bayesian ensemble model, which allowed spatiotemporal dependence of the random
effects between PM2.5 and AOD, outperformed (CV R2 = 0.66) the multistage model in a region with complex
terrain and emission sources. We compared the predictions from the twomodels on the fire and nonfire days,
as shown in Figure 6. PM2.5 predictions from the Bayesian ensemble model were closer to the observations
than those from the three-stage model, especially over high PM2.5 levels on the fire days. For locations where
PM2.5 observations were above 20 μg/m3, predictions from the three-stage model were always under
20 μg/m3, while the Bayesian ensemble model was able to estimate the high values.

Our model has limitations, and the model performance is not as good as those in the eastern United States.
As mentioned above, there were 43 outliers excluded from our fitting data sets, which had PM2.5 levels above
20 μg/m3 but were substantially underestimated by our approach. These data were randomly distributed in
time and space, with no apparent patterns across fire versus nonfire days, and across meteorological and land
use conditions. Including these outlying PM2.5 data, the 10-fold CV R2 of the Bayesian ensemble model
decreased from 0.66 to 0.60. These outliers might be localized events that could not be explained by the cur-
rent parameters. It might also be related to the coarse resolution of the meteorological variables used in our
model. In a region with complex terrain like Colorado, high-resolution meteorological data are likely to better
resolve the relationship between PM2.5 and AOD. The meteorological data used in this study had a spatial
resolution of 14 and 32 km, which were insufficient to represent the highly localized air movement and mix-
ing. The mismatch in time for the 24-hr mean PM2.5 concentrations, the Terra-Aqua averaged AOD, and the
daytime meteorological fields might also contribute to the biases in the model. According to Kaiser et al.
(2012), there is a distinct difference between daytime and nighttime biomass burning energy release
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cycles. Using the average between Terra and Aqua AOD might not be appropriate to represent the diurnal
variations in AOD over fire events. Another reason of the worse model performance in Colorado could be
that the PM2.5 levels in Colorado were lower compared to the eastern United States. In summer time, the
averaged PM2.5 concentrations in Colorado were 50%–100% lower than those in the East. As reported by
Di et al. (2016), model performance was positively linked to PM2.5 levels in their national model, because a
lower level of PM2.5 means a lower signal-to-noise ratio while model uncertainty remained constant. The
low PM2.5 level and high elevation also contributed to more uncertainties in the MAIAC AOD retrievals.
Comparisons between MAIAC AOD and AERONET AOD have shown moderate data quality in this region
(Table S1). Improvements in the MAIAC AOD data might lead to better predictions since AOD was an
important parameter in our model. In addition, we assumed a simple exponential covariance function
when interpolating the ensemble weights, which might introduce additional biases. This motivates future
methods, such as including covariates in the ensemble weights or nonisotropic/nonstationary spatial
covariance functions.

5. Conclusions

In this study, we applied a Bayesian ensemble model that combined information from the 1 km resolution
MAIAC AOD products, the CMAQ model simulations, and the ground measurements to predict full coverage
daily PM2.5 concentrations during fire seasons in Colorado over 2011–2014. Our model had reasonable per-
formance, with a 10-fold CV R2 of 0.66 and CV RMSE of 2.00 μg/m3, better than the three-stage statistical
model, especially on the fire days. The prediction maps showed that the model successfully captured the ele-
vated PM2.5 concentrations over large fire events. Our study has built up a model framework in this challen-
ging region. Future improvements in the choice of indicators and accuracy of input data will likely further
enhance the model’s performance. For example, the PM2.5 simulations from the CMAQ model in our study
domain were underestimated compared to the observation data, which was caused by the uncertainties in
themodel emissions andmeteorological inputs. Improvements in the CMAQmodel are very likely to improve
the performance of the CMAQ downscaler and reduce the model biases in the final predictions. Although
MAIAC AOD and the aerosol type product have captured the smoke plumes in some cases, more efforts
are needed to find a new indicator for the representation of smoke plumes. In addition, we expect to explore
high-resolution meteorological data such as the newly emerged High-Resolution Rapid Refresh (HRRR) data
at 3 km resolution fromNOAA (James et al., 2017) to better represent the local conditions. Future work should
also consider the development of high-resolution meteorological fields that could match the scale of the
MAIAC AOD data.
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